Wednesday, April 22, 2015

Permulaan geometri terawal yang direkodkan boleh dijejak ke Mesopotamia purba, Mesir, dan Lembah Indus dari sekitar 3000 SM. Geometri awal adalah koleksi dari empirikal yang dijumpai yang mengambil berat jarak, sudut, luas, dan isipadu, yang telah berkembang untuk menemukan sesetengah keperluan praktikal dalam tinjauanpembinaan,astronomi, dan berbagai kraf. Teks terawal yang dikenali pada geometri ialah Papirus Papirus Mesir, dan Papirus Moscow , Batu bersurat tanah liat Babylonia, dan Shulba Sutras India, manakala orang Cina mempunyai karya Mozi,Zhang Heng, dan Sembilan Bab pada Seni Matematik, ditulis oleh Liu Hui.
Elemen Geometri Euclid (c. 300 SM) merupakan salah satu dari teks awal yang terpenting pada geometri, dia persembahkan geometri dalam bentuk aksiomatik yang ideal, yang dikenali sebagai geometri Euclid. Treatis ialah bukan, seperti yang kadangkala diingatkan, satu ringkasan dari semua ahli matematik Hellenistik yang seumpama mengetahui tentang geometri pada masa itu; berbanding, ia adalah pengenalan elementari kepadanya;[2] Euclid sendiri menulis lapan lagi buku canggih pada geometri. Kami mengetahui dari rujukan lain bahawa Euclid ialah bukan buku teks elementari geometri pertama, tetapi yang lain jatuh pada tidak dalam kegunaan dan telah hilang.[perlu rujukan]
Pada Zaman PertengahanAhli matematik Muslim menyumbangkan kepada perkembangan geometri, terutamanyageometri Algebra dan Algebra geometriAl-Mahani (l. 853) mendapat idea mengurangkan masalah geometrikal seperti menyalin kubus kepada masalah dalam algebraThābit ibn Qurra (dikenali sebagai Thebit dalam Latin) (836-901) mengendali dengan pengendalian arimetikal yang diberikan kepada ratio kuantiti geometrikal, dan menyumbangkan kepada perkembangan geometri analitikOmar Khayyám (1048-1131) menemui penyelesaian geometrik kepadapersamaan kubik, dan penyelidikan besarannya dari penganggapan sejajar menyumbang kepada perkembangangeometri bukan Euclid.[perlu rujukan]
Pada awal abad ke-17, terdapat dua perkembangan penting dalam geometri. Yang pertama, dan yang terpenting, adalah penciptaan geometri analitik, atau geometri dengan koordinat dan persamaan, oleh René Descartes (1596–1650) dan Pierre de Fermat (1601–1665). Ini adalah prakursor diperlukan kepada perkembangan kalkulus dan sains kuantitatif tepat dari fizik. Perkembangan geometrik kedua dari tempoh kedua ini adalah penyelidikan sistematik darigeometri projektif oleh Girard Desargues (1591–1661). Geometri projektif adalah penyelidikan geometri tanpa ukuran, cuma dengan menyelidik bagaimana poin selari dengan satu sama lain.
Dua perkembangan dalam geometri pada abad kesembilanbelas mengubah cara ia telah dipelajari sebelumnya. Ini merupakan penemuan Geometri bukan Euclid oleh LobachevskyBolyai dan Gauss dan dari formulasi simetri sebagai pertimbangan utama dalam Program Erlangen dari Felix Klein (yang menyimpulkan geometri Euclid dan bukan Euclid). Dua dari geometer tuan pada masa itu ialah Bernhard Riemann, bekerja utamanya dengan alatan dari analisis matematikal, dan memperkenalkan permukaan Riemann, dan Henri Poincaré, pengasas topologi algebraik dan teori geometrik dari sistem dinamikal.
Sebagai akibat dari perubahan besar ini dalam konsepsi geometri, konsep “ruang” menjadi sesuatu yang kaya dan berbeza, dan latarbelakang semulajadi untuk teori seperti berlainan seperti analisis kompleks dan mekanik klasikal. Jenis tradisional geometri telah dikenalpasti seperti dari ruang homogeneous, iaitu ruang itu mempunyai bekalan simetri yang mencukupi, supaya dari poin ke poin mereka kelihatan sama.
Pengertian Geometri
Geometri (Greek γεωμετρία; geo = bumi, metria = ukuran) adalah sebahagian dari matematik yang mengambil berat persoalanan mengenai saiz, bentuk, dan kedudukan relatif dari rajah dan sifat ruang. Geometri ialah salah satu dari sains yang tertua. Pada mulanya ia hanyalah sebahagian jasad dari pengetahuan praktikal yang mengambil berat dengan jarakluas dan isipadu, tetapi pada abad ketiga S.M. geometri telah diletakkan di dalam bentuk aksiom olehEuclid membentuk Geometri Euclid, yang hasilnya menetapkan piawai untuk beberapa abad berikutnya. Bidangastronomi, khususnya memetakan bintang-bintang dan planet-planet pada sfera cakerawala, bertindak sebagai sumber-sumber geometri terpenting dari semasa satu setengah alaf berikutnya.
Pengenalan kepada koordinat oleh Descartes dan perkembangan sejajar kepada algebra menandakan peringkat baru untuk geometri, sejak rajah-rajah geometri, seperti lengkungan datar, kini boleh dipersembahkan secara analitik. Ini memberikan peranan yang penting kepada kemunculan kalkulus pada abad ke tujuh belas. Tambahan pula, teoriperspektif menunjukkan bahawa terdapat lebih banyak geometri daripada hanya sifat-sifat metrik(pengukuran) kepada rajah. Subjek dari geometri telah kemudiannya diperkayakan oleh pembelajaran struktur intrinsik dari objek geometrik yang berasal dengan Euler dan Gauss telah membawa kepada penciptaan topologi dan pembezaan geometri.
Sejak penemuan abad kesembilan-belas dari geometri bukan Euclid, konsep dari ruang telah mengalami perubahan yang besar. Geometri kontemporari menganggap berganda, ruang yang amat lebih abstrak dari ruang Euclid yang lazim, iaitu mereka hanya beranggaran menyerupai pada skala kecil. Ruang ini mungkin dikurniai dengan struktur tambahan, membenarkan seorang untuk bertutur tentang jarak. geometri moden mempunyai ikatan kuat berganda dengan fizik, dicontohi oleh ikatan antara geometri Riemann dan kerelatifan am. Salah satu dari teori fizikal termuda,teori tali, juga amat geometrik dalam intipatinya.
Satu sifat penglihatan dari geometri membuatkan ia pada mulaanya lebih mudah dikira berbanding dari bahagian lain matematik, seperti algebra atau teori nombor. Bagaimanapun, bahasa geometri juga digunakan dalam konteks bahawa mereka dikeluarkan jauh dari tradisi, tempat asal Euclidnya, contohnya, dalam geometri pecahan, dan khususnya dalamgeometri Algebra.[1]
Geometri Euclid
Geometri Euclid merupakan sebuah sistem matematik yang disumbangkan oleh seorang ahli matematik Yunanibernama Euclid dari Alexandria. Teks Euclid, Elements merupakan sebuah kajian sistematik yang terawal mengenaigeometri. Ia sudah menjadi salah satu buku-buku yang paling berpengarh di dalam sejarah, sama banyaknya dengan kaedahnya yang mempunyai isi kandungan matematik. Kaedah cara yang mengandungi andaian satu set aksiomsecara intuitif yang sangat menarik, dan kemudiannya membuktikan banyak usul (teorem-teorem) daripada aksiom-aksiom berkenaan. Walaupun banyak daripada keputusan-keputusan oleh Euclid sudah dinyatakan oleh ahli-ahli matematik Yunani sebelumnya, Euclid merupakan orang yang pertama untuk menunjukkan bagaimana usul-usul ini diletakkan secara sempurna membentuk satu deduksi dan sistem logik yang komprehensif.
Buku Elements ini bermula dengan geometri satah, yang masih lagi diajar di sekolah menengah sebagai satu sistem aksioman dan contoh-contoh pembuktian formal yang pertama. Kemudiannya, Elements merangkumi geometri pepejaldalam tiga dimensi, dan seterusnya geometri Euclid telah dipanjangkan kepada satu bilangan dimensi yang terhingga. Kebanyakan daripada Elements menyatakan keputusan-keputusan dalam apa yang kini disebut sebagai teori nombor, yang boleh dibuktikan menerusi kaedah geometri.
Selama dua ribu tahun, kata adjektif “Euclid” tidak diperlukan kerana pada masa itu tiada geometri lain dapat dibayangkan. Aksiom-aksiom Euclid nampak seperti sangat jelas sehinggakan apa-apa teorem lain yang dibuktikan daripadanya dianggap benar secara mutlak. Hari ini, bagaimanapun, banyak geometri bukan Euclid sudah diketahui, yang pertamanya telah dijumpai pada awal abad ke-19. Ia juga tidak boleh diambil mudah bahawa geometri Euclid hanya menggambarkan ruang fizikal. Satu implikasi daripada teori Einstein mengenai teori kerelatifan umum bahawa geometri Euclid merupakan satu anggaran yang baik kepada sifat-sifat ruang fizikal hanyak sekiranya medan gravititidak terlalu kuat.
Pendekatan aksioman
Geometri Euclid merupakan satu sistem aksioman, yang mana semua teorem (“penyataan benar”) adalah diambil daripada satu bilangan aksiom-aksiom yang terhingga. Pada permulaan buku Elements yang pertama, Euclid memberikan lima postulat (aksiom):
  1. Apa-apa dua titik boleh dihubungkan dengan satu garis lurus.
  2. Apa-apa tembereng garis lurus boleh dipanjangkan di dalam satu garis lurus.
  3. Satu bulatan boleh dilukis dengan menggunakan satu garis lurus sebagai jejari dan satu lagi titik hujung sebagai pusat.
  4. Semua sudut serenjang adalah kongruen.
  5. Postulat selari. Jika dua garis bersilangan dengan yang ketiga dalam satu cara yang jumlah sudut dalaman adalah kurang daripada satu lagi, maka dua garis ini mesti bersilangan di atas satu sama lain sekiranya dipanjangkan secukupnya.
Aksiom-aksiom ini menggunakan konsep-konsep berikut: titik, tembereng garis lurus dan garis, sebahagian daripada satu garis, bularan dengan jejari dan pusat, sudut serenjang, kongruen, sudut-sudut dalaman dan serenjang, jumlah. Kata-kata kerja yang berikut muncul: sambung, dipanjangkan, lukis, silang. Bulatan ini digambarkan dengan menggunakan postulat 3 adalah sangat unik. Postulat-postulat 3 dan 5 hanya boleh digunakan untuk geometri satah; dalam tiga dimensi, postulat 3 mentakrifkan suatu bulatan.
Satu bukti daripada buku Euclid “Elements” bahawa apabila diberikan satu tembereng garis, satu segitiga sama wujud termasuklah tembereng sebagai salah satu daripada tiga sisi. Buktinya adalah dengan cara binaan: Satu segitiga sama ΑΒΓ dibuat dengan melukis bulatan Δ dan Ε berpusat pada titik-titik Α dan Β, dan dengan mengambil satu persilangan bulatan sebagai puncak sudut ketiga bagi segitiga tersebut.
Postulat 5 membawa kepada geometri yang sama sebagai penyataan yang berikut, dikenali sebagai Aksiom Playfair, yang hanya boleh dipegang hanya konsep di dalam satah itu:
Menerusi satu titik yang tidak terletak di atas satu garis lurus, hanya satu sahaja garis yang boleh dilukis tidak akan bertemu garis yang diberi.
Postulat-postulat 1, 2, 3, dan 5 menegaskan bahawa kewujudan dan keunikan rajah-rajah geometri, dan peegasan ini adalah satu binaan semulajadi: iaitu, kita tidak diberitahu bahawa ada perkara tertentu wujud, tetapi kaedah-kaedah diberi untuk mencipta dengan tidak lebih daripada satu kompas dan satu pinggiran lurus yang tidak bertanda. Dalam kes ini, geometri Euclid adalah lebih konkrit daripada kebanyakan sistem-sistem aksiom moden seperti teori set, yang mana kebiasaannya menegaskan kewujudan objek-objek tanpa mengatakan bagaimana untuk membina mereka, atau menegaskan kewujudan objek-objek yang tidak boleh dibina di dalam ruang teori berkenaan.
Sebenarnya, binaan-binaan garis di atas kertas dan sebagainya adalah model-model objek yang lebih baik ditakrifkan di dalam sistem formal, daripada hanya contoh-contoh objek berkenaan. Sebagai contoh, satu garis lurus Euclid tidak mempunyai lebar, tetapi apa-apa garis yang benar akan menjadi lebar.
Elements juga memasukkan lima “notasi biasa”:
  1. Perkara yang sama dengan benda yang sama tetapi juga setara antara satu sama lain.
  2. Jika setara ditambahkan kepada persamaan, maka jumlah keseluruhan juga adalah setara.
  3. Jika setara ditolak daripada persamaan, maka bakinya juga adalah setara.
  4. Perkara yang bertembung di antara satu sama lain juga setara antara satu sama lain that coincide with one another equal one another.
  5. Jumlah keseluruhan juga lebih besar daripada bahagian berkenaan.
Euclid juga menggunakan sifat-sifat lain yang berkaitan dengan magnitud. 1 adalah satu-satunya bahagian daripada dasar logik yang Euclid lahirkan dengan terang dan jelas. 2 dan 3 adalah prinsip-prinsip “aritmetik”; perhatikan bahawa makna-makna “tambah” dan “tolak” di dalam konteks geometri asli ini telah diberi sama seperti diambil. 1 hingga 4 secara takrifan mempunyai persamaan, yang mana boleh juga diambil sebagai bahagian pendasaran logik atau sebagai satu keperluan hubungan kesetaraan , seperti “pertembungan,” definisi yang sangat teliti. 5 adalah satu prinsipmereologi. “Keseluruhan”, “sebahagian”, dan “baki” memerlukan takrifan yang tepat.
Sumber : https://readymath.wordpress.com/sejarah-geometri-euclid-3/

0 komentar:

Post a Comment